Welcome to the Dictionary of Programming Languages, a compendium
of computer coding methods assembled to provide information and
aid your appreciation for computer science history.
Browse the dictionary by clicking on a section:
A
B
C
D
E
F
G
H
I
JK
L
M
N
O
P
QR
S
T
UV
WXYZ+
Get a full dump of the dictionary:
List of Names
Short Form
Full Form
{ Table data structure, adapted from an example in "Multiparadigm Data Structures in Leda" by Tim Budd, 1993 Assumes the list data structure is already defined. } class Association [X, Y : equality] of equality[Association]; var key : X; value : Y; function equals(argValue : Association[X, Y])->boolean; begin return key = argValue.key; end; end; class Table [X, Y : equality] { of equality[Association] }; var data : List[Association[X, Y]]; function add (newKey : X, newValue : Y); begin if ~ defined(data) then data := List[Association[X, Y]](); data.add(Association[X, Y](newKey, newValue)); end; function onEach (theFun : function(X, Y)); begin if defined(data) then data.onEach(function (item : Association[X, Y]); begin theFun(item.key, item.value); end); end; function items (byRef key : X, byRef value : Y)->relation; var element : Association[X, Y]; begin return defined(data) & data.items(element) & unify[X](key, element.key) & unify[Y](value, element.value); end; function includesKey (key : X)->boolean; var value : Y; begin if items(key, value) then return true; return false; end; function at (key : X)->Y; var value : Y; begin if items(key, value) then return value; return NIL; end; function atPut (key : X, value : Y); var element : Association[X, Y]; begin if defined(data) & data.items(element) & element.key = key then element.value := value else add(key, value); end; end;
global(sieve)? global(limit)? main :- write("N=?"), read_token(limit & int), next_prime(2), nl. remove_multiples(P,M) :- cond(M < limit, (sieve.M <-multiple_of(P),remove_multiples(P,M+P)) ). next_prime(P) :- P < limit, !, SP=sieve.P, ( SP=prime(P), !, write(P,' '), remove_multiples(P,2*P) ; succeed ), next_prime(P+1). next_prime(P).
# A simple program to sum up some numbers # presented on the command line, from # Bob Pike's forthcoming book on Limbo. implement Sum; include "sys.m"; sys: Sys; include "draw.m"; Sum: module { init: fn(context: ref Draw->Context, argl: list of string); }; init(context: ref Draw->Context, argl: list of string) { sys = load Sys Sys->PATH; argl = tl argl; # ignore command name if(len argl == 0){ sys->print("usage: sum numbers....\n"); return; } sum := 0.0; while(argl != nil){ arg := hd argl; sys->print("%s", arg); sum += real arg; argl = tl argl; if(argl != nil) sys->print(" + "); } sys->print(" = %g\n", sum); }
;; Simple factorial routine ;; (until I get a better example written) (defun fact1 (num) (cond ((not (integerp num)) nil) ((<= num 1) 1) (t (* num (fact1 (- num 1))))) )
; Recursive procedure to line, fractalized to DrawFractalLine :level :length ifelse :level < 1 [ fd :length] [ DrawFractalLine (sum -1 :level) (quotient :length 3.00) left 60 DrawFractalLine (sum -1 :level) (quotient :length 3.00) right 120 DrawFractalLine (sum -1 :level) (quotient :length 3.00) left 60 DrawFractalLine (sum -1 :level) (quotient :length 3.00) ] end ; procedure to clear screen and position turtle to SetupTurtle cs setpos [-160 -10] right 60 clean end ; setup turtle then draw Koch's snowflake(5) SetupTurtle setpensize [2 2] repeat 3 [DrawFractalLine 5 330 right 120]
' Find agents owned by the current user ' and remove them (Adapted from examples at ' www.lotus.com) Dim session As New NotesSession Dim db As NotesDatabase Dim agentArray(1 To 10) As NotesAgent Dim count as Integer Dim answer as string count = 0 Set db = session.CurrentDatabase Forall a In db.Agents If ( a.Owner = session.UserName ) Then Set agentArray(count) = a count = count + 1 If (count > 10) Then Exit Forall End If End If End Forall answer = Inputbox$( "You have " & count & " agents. Delete them?" ) If (answer = "y") Or (answer = "yes") Then Forall a in agentArray Call a.Remove End Foreall End If
-- Simple Lua program that implements the -- bisection method for solving non-linear equations function bisect(f,a,b,fa,fb) write(n," a=",a," fa=",fa," b=",b," fb=",fb,"\n") local c=(a+b)/2 if abs(a-b) < delta then return c end n=n+1 local fc=f(c) if fa*fc < 0 then return bisect(f,a,c,fa,fc) else return bisect(f,c,b,fc,fb) end end -- find root of f in the inverval [a,b]. -- bisection requires that f(a)*f(b) < 0 function solve(f,a,b) delta=1e-6 -- tolerance n=0 local z=bisect(f,a,b,f(a),f(b)) write(format("after %d steps, root is %.10g\n",n,z)) end -- test the bisection code with -- a function: x^3 - x - 1 function f(x) return x*x*x - x - 1 end solve(f,1,2)
h where h = 1 fby merge(merge(2 * h, 3 * h), 5 * h); merge(x,y) = if xx <= yy then xx else yy fi where xx = x upon xx <= yy; yy = y upon yy <= xx; end; end;
Descriptions in this dictionary are ©1997-99 Neal Ziring. Some examples copyright of their respective authors. Some technologies and languages are trademarked. Permission to copy descriptions is granted as long as authorship credit is preserved.
Comments on this dictionary, corrections and suggestions, are all welcome. Please use email, the address is ziring@home.com
[Ziring MicroWeb Home] [Dictionary Start] [Sign Guestbook]
Dictionary and script maintained by Neal Ziring, last major modifications 3/18/98. Most recent additions to dictionary and master list, 1/00.